Weekly Update: September 9th - September 15th

Like Comment

Welcome. This week we have a preliminary report on the use of granulocyte colony stimulating hormone on COVID-19 outcomes, results of a study on outcomes among those 18-34 who are hospitalized for COVID-19, new information about cardiac MRI in college athletes infected with SARS-CoV-2, and a cautionary tale about reopening restaurants and bars.

Human Granulocyte Colony-Stimulating factor (rhG-CSF) did not result in faster improvement in COVID-19 but more study is needed. 200 adult patients over age 18 were randomized to rhG-CSF plus usual care or usual care alone (100 in each group, open label, median age 45). All patients had lymphopenia at baseline and no comorbidities. Outcome was time to clinical improvement. There was no difference in time to improvement between the groups. However, fewer treated patients went on to develop critical disease (2 vs. 15) and fewer in the treatment group died (2 vs. 10). The authors conclude that “larger studies that include a broader range of patients with COVID-19 should be conducted.”
Another study of a promising treatment with relatively small numbers and in a limited population (no comorbidities…of 329 screened only 200 met criteria).  As per the authors, we need more data. The full article can be found here.

  • Cheng L, Guan W, Duan C, et al. Effect of Recombinant Human Granulocyte Colony–Stimulating Factor for Patients With Coronavirus Disease 2019 (COVID-19) and Lymphopenia: A Randomized Clinical Trial. JAMA Intern Med. Published online September 10, 2020. doi:10.1001/jamainternmed.2020.5503

A study that confirms what we know about MRI findings of myocarditis in COVID-19, now in patients with mild COVID-19 disease. This is study of cardiac MRI findings in 26 college athletes with a positive COVID-19 test. Importantly, none of these patients required admission or were treated with “COVID-19 specific antiviral therapy.” 12 of the 26 had mild COVID-19 symptoms and the other 14 were asymptomatic. All had normal EKGs and none had an elevated troponin. 12 of the 26 had some cardiac finding on MRI. Myocarditis was found in four, two of whom were asymptomatic with the other two having mild symptoms. Findings of prior myocardial injury was found in the other eight.
Myocarditis is a risk for sudden death due to arrhythmia. This is a cautionary tale about the effects of COVID-19 even on those with mild or no symptoms. Whether we should exclude these athletes from competition is unknown. The full article can be found here.

  • Rajpal S, Tong MS, Borchers J, et al. Cardiovascular Magnetic Resonance Findings in Competitive Athletes Recovering From COVID-19 Infection. JAMA Cardiol. Published online September 11, 2020. doi:10.1001/jamacardio.2020.4916

Of young adults (age 18-34 years) requiring hospitalization for COVID-19 2.7% died, 10% required intubation and 21% require ICU care. Cases of COVID-19 are increasing in young adults, including those returning to college. This is a study of 3222 individuals age 18-34 years admitted for COVID-19 to 419 hospitals. Patients admitted for pregnancy were excluded. Fifty-seven percent were Black or Hispanic.
Twenty-one percent required ICU care, 10% required intubation, and 2.7% died. As in other studies, morbid obesity and hypertension were associated with worse outcomes.
While younger individuals are less likely to become seriously ill with COVID-19, youth does not confer immortality. We need to stress social distancing and mask wearing for all populations, not only those who are older.  This also re-enforces the excess burden of this disease in Blacks and Hispanics. The full text can be found here.

  • Cunningham JW, et al. Clinical Outcomes in Young US Adults Hospitalized with COVID-19. JAMA Intern Med. Published online September 9, 2020. doi:10.1001/jamainternmed.2020.5313

Restaurants, bars and coffee shops are high risk areas for COV ID-19 transmission. This is a case-controlled study of adults from 11 health care institutions looking at exposures in various settings and the frequency of diagnosed COVID-19. They administered a structured interview to 154 symptomatic COVID-19 positive patients and 160 controls out of 802 contacted (and a pool of 615 potential cases and 1,012 controls).
The participants were asked about exposures to the following locations: Shopping, home of < 10 individuals, restaurants, office settings, salons, home of > 10 individuals, gyms, public transportation bars/coffee shops and religious gatherings.
After adjusting for known exposure to COVID-19, bars, coffee shops and restaurants fell out as significant sources of exposure.
Of note, church/religious gatherings and gyms also strongly trended as sources of exposure and likely would be significant in a larger study. For example only 20 of the participants, 12 COVID-19 positive and 8 COVID-19 negative, attended church.  And, we know from empirical data that religious gatherings can be a source of transmission.

This study suffers from a relatively small sample. They did not do a power analysis, so we don’t know if this study is large enough to rule out differences that are there (type II error). Studies based on participant recall are also subject to “recall bias”, that is people may or may not remember their exposures correctly. Finally, a significant number invited to do so declined to participate. The full study can be found here.

  • Fisher KA, Tenforde MW, Feldstein LR, et al. Community and Close Contact Exposures Associated with COVID-19 Among Symptomatic Adults ≥18 Years in 11 Outpatient Health Care Facilities — United States, July 2020. MMWR Morb Mortal Wkly Rep 2020;69:1258–1264. DOI: http://dx.doi.org/10.15585/mmwr.mm6936a5external icon.
  • James A, Eagle L, Phillips C, et al. High COVID-19 Attack Rate Among Attendees at Events at a Church — Arkansas, March 2020. MMWR Morb Mortal Wkly Rep 2020;69:632–635. DOI: http://dx.doi.org/10.15585/mmwr.mm6920e2external icon.

No comments yet.